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Abstract. In this paper, we propose an alternative to model-free rein-
forcement learning approaches that recently have demonstrated Theory-
of-Mind like behaviors. We propose a game theoretic approach to the
problem in which pure RL has demonstrated to perform below the stan-
dards of human-human interaction. In this context, we propose alterna-
tive learning architectures that complement basic RL models with the
ability to predict the other’s actions. This architecture is tested in differ-
ent scenarios where agents equipped with similar or varying capabilities
compete in a social game. Our different interaction scenarios suggest
that our model-based approaches are especially effective when compet-
ing against models of equivalent complexity, in contrast to our previous
results with more basic predictive architectures. We conclude that the
evolution of mechanisms that allow for the control of other agents provide
different kinds of advantages that can become significant when interact-
ing with different kinds of agents. We argue that no single proposed addi-
tion to the learning architecture is sufficient to optimize performance in
these scenarios, but a combination of the different mechanisms suggested
is required to achieve near-optimal performance in any case.
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1 Introduction

Recent advances in Machine Learning (ML) have shown how model-free Rein-
forcement Learning (RL) algorithms can solve, apparently, any variety of tasks.
This becomes more salient by works from Botvinick, Abeel and collaborators
that show how RL agents can learn to collaborate in tasks, develop verbal and
non-verbal communication mechanisms and develop Theory-of-Mind (ToM) like
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behaviors [1,2]. Nonetheless, our ability to understand how these algorithms
generate this set of behaviors is limited and doesn’t provide a further under-
standing of the mechanisms underlying both biological or artificial agents cog-
nitive abilities. To our knowledge, these algorithms behave as an optimization
system that converges to a possible, reactive solution, whereas the adaptabil-
ity to small changes in the environment takes substantially more time than in
biological learning or adaptive systems.

In this paper, we propose a methodology to generate cognitive architectures
with the objective to understand, particularly, what are the underlying mech-
anisms of ToM-related behavior. For this reason, we borrow from game theory
the Battle of the Exes (BotE) game. We propose a variety of architectures that
include the assumption of underlying ToM mechanisms and compare them in
order to understand how collaboration and emergence in social interactions can
occur. The following section describes the experimental setup and the architec-
tures. We detail the comparative results between a pure RL algorithm and our
architectures in Sect. 3. Finally, we discuss the results and provide insights for
future advancement in social robot interactions.

2 Methods

2.1 Experimental Setup

To test the interaction between these models, we used as a benchmark the
continuous-time version of Battle of the Exes [3]. In this version, two agents
compete against each other to obtain one of the two possible rewards. One of
them (high reward) gives a significantly better outcome than the other one (low
reward), but if both agents reach for the same reward, none of them will obtain
any. We created two conditions, “High” and “Low?”, to see if the manipulation of
the difference between both rewards affects the outcome. As shown in Fig. 1(A),
the high reward gives 4 points in the “High” condition, and 2 in the “Low”.

A

“Low” Condition “High” Condition
Great Coffee Okay Coffee Great Coffee Okay Coffee
Great Great
Coffee 0,0 1,2 Coffee 0,0 1,4
Okay 2,1 0,0 Okay 4,1 0,0

Coffee ’ ’ Coffee

Fig. 1. (A) Payoff matrices of the Low (left) and High (right) reward conditions used in
both experiments. (B) Snapshot of the experimental setup at the start of each round.
In blue, two simulated ePucks; and in green, the reward spots. The high reward is
represented by the bigger spot. The threshold that indicates the tie area is represented
by the white circles.
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In the two experiments carried out in this study, we perform 50 matches
between different pairs of agents, with each match consisting of 200 rounds. In
experiment one, for each of the three cognitive models described below (check
Control-based Reinforcement Learning Model, Opposing Model and Predictive
Model sections) we make both agents play against each other using both the
same model for each of the payoff conditions, High and Low. In experiment
two we test the new models against the original Control-based Reinforcement
Learning Model. For that, we follow the same 3 x 2 experimental paradigm, but
in this case, an agent of each pair is endowed with the original model in all
conditions.

The experimental setup has been implemented in a 2D robot simulator,
PyRobot2DSim, that is based on the PyBoz2D and PyGame libraries (see
Fig. 1(B) for a visual depiction of the game). All the agents used during the
two experiments are embodied and situated in this 2D environment as virtual
ePuck robots, so they all have the same number of sensors and actuators. More
specifically, they have 3 pairs of sensors, each specialized in detecting one type of
object (the high reward, the low reward, and the other agent); and two motors,
to control the left and right wheels.

Regarding the rules of the Battle of the Exes, they are implemented as follows:
Both agents start at equally distant positions of both rewards (see Fig. 1(B) to
see the initial conditions of the game). A round ends at the moment that an
agent touches a reward spot. A round ends in a tie if both agents are inside
the same white circle that surrounds each reward. In any other case, the agent
that first reaches a reward receives the points attached to it, and the other agent
immediately receives the points of the opposite reward, as indicated by the payoff
matrix. After the reward assignment is done, both agents are automatically
transported to their initial positions and a new round starts.

2.2 Original Model

This model is building on the Control-based Reinforcement Learning (CRL)
cognitive architecture presented in our previous work [4]. The CRL is a two-
layered control architecture that follows the organizing principles of the biologi-
cally grounded Distributed Adaptive Control (DAC) theory of mind and brain.
It features a low-level Reactive Layer for real-time sensorimotor control and an
Adaptive Layer composed of an actor-critic reinforcement learning algorithm
that can learn high-level discrete-time strategies. This hierarchical composition
enables both top-down and bottom-up interactions between the reactive and
adaptive components of the architecture, which helps to coordinate behavior
between both layers.

The Reactive Layer is composed of two reactive behaviors: “attraction
towards rewards” and “escape from agents”. The implementation is motivated
by Valentino Braitenberg’s Vehicles [7], where he demonstrates how to generate
behavior by directly connecting the sensors and actuators of an agent. Follow-
ing this approach, the “attraction towards rewards” is composed of a direct
inhibitory connection and a crossed excitatory connection between the reward
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sensors of the agent and its motors. The resulting behavior will make the agent
turn in the direction of a reward with a speed proportional to the activation of
its reward sensors. Given that the agent has two sets of sensors, each special-
ized in detecting one type of reward, this behavior is implemented twice, once
for the high reward and once for the low reward. For the “escape from agents”
behavior, the set of connections is the opposite; a crossed inhibitory connection
and a direct excitatory connection. The effect of this configuration is an avoid-
ance behavior whose speed is also linked to the level of activation of the sensors
specialized to detecting other agents.
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Fig. 2. (A) Schema of the Control-based Reinforcement Learning architecture. The
Adaptive Layer (big red box, top) is implemented as a TD-learning algorithm, that in
turn is composed of an Actor (P) and a Critic (V). The Critic predicts the expected
value of a given state, and based on the outcome of the previous round, it calculates a
temporal-difference error -or TD error- (e) that serves to update itself and the Actor.
The Actor is in charge of selecting which action to perform in each state. This action is
sent down to the inhibitor (7), that will shut down one of the reactive behavior depend-
ing on the action chosen. The Reactive Layer (big green box, bottom) is integrated by
three set of sensors to detect high and low rewards (s, s*) and other agents (s*),
two motors (my, m..) and three functions that connect the sensors and the motors (f,
fE, fA) to create the reactive behaviors of reward attraction and agent avoidance.
(B) Schematic description of the Other’s Model. It’s composed of two Reinforcement
Learning algorithms (RL) such as the one described in A. The first one (left) predicts
the action of the other agent based on its outcome, and its updated with the other
agent’s reward. The second one (right), uses that prediction and its own outcome to
choose its own action. (C) Schematic description of the Self Model. It’s made of two
RL algorithms as in B. The first RL module its also used to predict an action based on
the other agent’s outcome, but then its updated according to the agent’s own reward.
(Color figure online)
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The Adaptive Layer implements a Temporal-Difference reinforcement learn-
ing algorithm (TD-learning) [8] whose goal is to learn how to maximize the
acquisition of reward. It does it by learning a policy that decides which action
to perform for a given state of the environment. In this task, the state of the
environment is the outcome of the previous round. When a new round starts,
the TD-learning chooses an action based on the previous outcome, and when
the round ends, it updates its policy according to the reward received (for a
detailed explanation see Fig.2(A)). In this implementation, there are three pos-
sible states - “high”, “low”, and “tie”- that correspond to agent’s last result of
the game (it got the high reward, the low reward or it tied, respectively). The
available actions are: “to the high”, “to the low”, and “none”.

The interaction between the Reactive and Adaptive layers is modulated by
the action selected in each round, and it serves to selectively inhibit those reactive
behaviors that are not needed to execute the selected action. In the case that
the Adaptive Layer has chosen the action “to the high”, the “attraction towards
low reward” reactive behavior will be inhibited. On the contrary, if the Adaptive
Layer selects “to the low”, then the inhibited behavior will be “attraction towards
high reward”. However, when the selected action is “none”, none of the reactive
behaviors is inhibited. This capacity to modulate the agent’s attention according
to its planned action, in combination with the intrinsic agent-avoidance behavior,
has been shown crucial for achieving efficient multi-agent interactions in real-
time scenarios [4].

2.3 Other’s Model

The Other’s Model architecture implements two RL algorithms in the Adaptive
layer, such as the one described in the previous section (TD-learning). The first
algorithm is in charge of predicting the action of the other agent. It receives the
other agent’s outcome to make the prediction, and it keeps track of the other
agent’s reward to update it’s prediction, effectively creating an internal model of
the other agent’s policy. Then, the action predicted by the first RL serves as an
input to the second one, along with the outcome of the previous round, to produce
the agent’s next action (see Fig. 2(B)). As in the original Control-Based Reinforce-
ment Learning model, the second RL is updated according to its own reward.

2.4 Self Model

The Self Model architecture presents a subtle change compared to the Other’s
Model architecture. Conceptually, instead of trying to predict the action of the
other agent based on an internal model of the other’s strategy, this architecture
allows an agent to predict what it would do if it were in the position of the
other, and to use this information to chose its own action. Structurally, the first
RL algorithm still uses the other agent outcome to make a prediction about the
other’s future action but is updated using the agent’s own information regarding
outcome and reward. The second RL functions in the same way as the second RL
of the Other’s Model. So, in this architecture, both RL algorithms are updated
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following the agent’s own model, without taking into account any information
about the other, except for the moment of making the prediction (see Fig. 2(C)).

3 Results

In order to assess performance of different models described above, we use the
same metrics as in [4]: Efficiency, Fairness and Stability. Efficiency measures
the cumulative sum of rewards that agents were able to earn collectively in each
round, divided by the total amount of possible rewards. A value of 1 in efficiency
is equivalent to both agents obtaining all rewards with no ties at all. Fairness
quantifies the balance in reward distribution between the two agents. In this
case, a fairness value of 1 means that both players earned the higher payoff the
same amount of times or, equivalently, that the agents entered a turn-taking
kind of convention that fairly distributed rewards among them. Finally, Stability
measures how predictable the behavior was or, equivalently, whether the agents
converged to a common strategy or alternated between non-deterministic states.
In other words, stability quantifies how predictable are the outcomes of the
following rounds based on previous results by using the information-theoretic
measure of surprisal (also known as self-information), which Shannon defined as
“the negative logarithm of the probability of an event”. Analysis of variance and
post-hoc tests were performed for each condition.

Our results compare the different architectures detailed in the previous
section in the following manner. First, we compare the performance of each
algorithm when interacting with itself (Fig. 3, top panels). Then we extend this
comparison by making each architecture interact with the original RL model
(Fig. 3, bottom panels). By doing this, we observe how models achieve similar
levels of efficiency and fairness when competing against opponents of equal com-
plexity (Fig. 3(A)). In contrast, when both predictive models are paired with the
Original model, they tend to engage in more efficient interactions. Nonetheless,
these interactions are not necessarily equally fair, observed by the reduced fair-
ness in Fig. 3(B), where projecting self into the other agent tends to lead to more
efficient and less fair interactions. We interpret that this behavior is derived from
the added complexity in the predictive model, which allows to rapidly converge
into dominant interactions.

Overall, we observed that when these models are faced with simpler models
(i.e. the original RL model), the benefits of the ToM modules in the architecture
provide a significant benefit, reflected by an increase in efficiency in both high
(Original, M = 0.88; versus Other’s Model, M = 0.91, p < .001; and versus Self
Model, M = 0.92, p < .001) and low (Original, M = 0.86; versus Other’s Model,
M = 0.88, p < .001; and versus Self Model, M = 0.89, p < .001) conditions. Our
previous work (TROS, under review), showed that Supervised Learning (SL) based
predictive algorithms were having a similar effect when facing the Original model.
However, in that case, they showed decreased efficiency when facing themselves.
We suggest that the difference in the results between RL-based models and SL-
models is in the nature of their learning paradigm: while SL algorithms can easily
predict systems that are simpler than themselves, RL models seem to be able to
improve performance even in the most adverse odds, as observed in [1,2].
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Fig. 3. Predictive models are generally more efficient. Top panel: Results of the models
competing against themselves measured by Efficiency, Fairness, and Stability, both in
High and Low payoff difference conditions. Note that Stability is measured by the level
of surprisal, so a high value in surprisal means lower Stability. Bottom panel: Results
of the models competing against the original (non-predictive) model, measured with
the same metric as in the top panel.

4 Discussion

Our model proposes two alternatives to previous work, by either including a
model of the other or a model of the self that are used to predict the other
agent’s potential actions. With this, we test the architectural properties of some
of the underlying processes of Theory Of Mind. These models have demonstrated
to be an advantage when tested in a social decision-making task as shown by
the increased efficiency of the outcomes. More particularly, our results suggest
that having such predictive models of the other benefits the global outcome of
the interaction, whereas the model of the other vs. the model of one’s self, differ
significantly on their ability to collaborate (illustrated by the fairness measure).
We conclude that the evolution of mechanisms that allow for the control
of other agents provide different kinds of advantages that can become signifi-
cant when interacting with other kinds of agents. We argue that no single pro-
posed addition to the learning architecture is sufficient to significantly optimize
performance in these scenarios by its own, but a combination of the different
mechanisms suggested may achieve near-optimal performance in any case.
Additionally, our framework provides an interesting possibility to model com-
plex social behaviors using multi-agent robotic systems [9]. These behaviors have
also been tied to evolutionary dynamics of biological life forms and conscious
beings [10], [11], [12], [13]. The study of these social behaviors can also be of
great interest for achieving a greater understanding of human social and cul-
tural development and testing these ideas using multi-agent robot platforms.
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